联系我们

注: * 为必填选项,请确保全部填完进行提交
首页 > 产品详情 > 气体控制 > 动物低氧高氧实验

动物实验低压氧舱(标准款)

产品型号:

ProOx-810

详细介绍:

产品描述动物实验低压氧舱用于模拟低压氧高原环境,压力可以根据需要自行设置,最高可模拟海拔高度12000米,适用于中小型动物如犬、猴、兔、鼠等。 整个实验装置由动... 查看详情 >
留言购买

产品描述

动物实验低压氧舱用于模拟低压氧高原环境,压力可以根据需要自行设置,最高可模拟海拔高度12000米,适用于中小型动物如犬、猴、兔、鼠等。

整个实验装置由动物舱体、真空系统、监测及控制系统构成。设备的自动化程度高,无须专人守候,可长期持续一个月运行。 


产品特点

多功能

实时显示海拔和氧气浓度动态变化曲线

多功能编程控制:可进行阶段式、周期式、循环模式控制

实验过程数据可保存至U盘,可在电脑读取分析

具备自动换气功能,符合动物饲养规范

提供多方位的报警功能,提醒实验人员异常状态

 

确保安全

从设计开始到最终完成测试和检查,所有实验氧舱都遵循严格的生产过程;

具有紧急关闭和自动排气系统,以适应各种情况。

 

动物舱体

主体采用进口亚克力加厚材质,坚固可靠,透明方便观察;

铝合金及不锈钢材料支撑;

具有脚轮脚刹设计,方便移动。

 

气体输送控制系统

高性能低噪音的真空系统,为系统提供稳定的压力;

具有气体缓冲器,减小甚至消除了细股急流气体对小动物的影响;

完善的多级空气过滤器,确保动物舱内气体不会污染实验环境。

 

拓展及特殊定制

动物生理指标监测

可实现的监测指标:心电图、心率、体温、血压、呼吸、血氧饱和度;

呼吸代谢监控功能

采血给药功能

视频监测功能

动物低氧跑台装置

低氧强迫游泳装置

温控功能

ü恒温功能,温度可控制,室温-40℃;

ü低温功能,4℃,温度可控制,室温-4℃;

可定制其它功能

 


应用领域

高原医学研究、肺水肿、脑水肿、肺动脉高压等疾病研究

 


型号说明


名称

型号

说明

动物实验低压氧舱

ProOx-810

舱内尺寸(长×直径):700×560mm

动物实验低压氧舱

ProOx-810L

舱内尺寸(长×直径):1200*800mm



客户名单(部分)


图片4.png

 

 











相关文献

[1]Li C, Zhao Z, Jin J, et al. NLRP3-GSDMD-dependent IL-1β Secretion from Microglia Mediates Learning and Memory Impairment in a Chronic Intermittent Hypoxia-induced Mouse Model[J]. Neuroscience, 2024, 539: 51-65.

[2]Lei R, Gu M, Li J, et al. Lipoic acid/trometamol assembled hydrogel as injectable bandage for hypoxic wound healing at high altitude[J]. Chemical Engineering Journal, 2024, 489: 151499.

[3]Pei Y, Huang L, Wang T, et al. Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury[J]. Materials Today Advances, 2023, 17: 100349.

[4]Wang Y, Zhang R, Chen Q, et al. PPARγ Agonist Pioglitazone Prevents Hypoxia-induced Cardiac Dysfunction by Reprogramming Glucose Metabolism[J]. International Journal of Biological Sciences, 2024, 20(11): 4297.

[5]Ma Jinqiu,Wang Chenyun,Sun Yunbo,Pang Lulu,Zhu Siqing,Liu Yijing,Zhu Lin,Zhang Shouguo,Wang Lin,Du Lina. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia.[J] International Journal of Pharmaceutics,2020,591.

[6]Chen G, Cheng K, Niu Y, et al. (−)-Epicatechin gallate prevents inflammatory response in hypoxia-activated microglia and cerebral edema by inhibiting NF-κB signaling[J]. Archives of Biochemistry and Biophysics, 2022, 729: 109393.

[7]Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: the therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2024: 1-17.

[8]Pan Z, Yao Y, Liu X, et al. Nr1d1 inhibition mitigates intermittent hypoxia-induced pulmonary hypertension via Dusp1-mediated Erk1/2 deactivation and mitochondrial fission attenuation[J]. Cell Death Discovery, 2024, 10(1): 459.

[9]Yang W, Li M, Ding J, et al. High-altitude hypoxia exposure inhibits erythrophagocytosis by inducing macrophage ferroptosis in the spleen[J]. Elife, 2024, 12: RP87496.

[10]Pei C, Shen Z, Wu Y, et al. Eleutheroside B Pretreatment Attenuates Hypobaric Hypoxia‐Induced High‐Altitude Pulmonary Edema by Regulating Autophagic Flux via the AMPK/mTOR Pathway[J]. Phytotherapy Research, 2024, 38(12): 5657-5671.

[11]Song J, Zheng J, Li Z, et al. Sulfur dioxide inhibits mast cell degranulation by sulphenylation of galectin-9 at cysteine 74[J]. Frontiers in Immunology, 2024, 15: 1369326.

[12]Jia N, Shen Z, Zhao S, et al. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr. etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway[J]. International Immunopharmacology, 2023, 121: 110423.

[13]Wu Y, Tang Z, Du S, et al. Oral quercetin nanoparticles in hydrogel microspheres alleviate high-altitude sleep disturbance based on the gut-brain axis[J]. International Journal of Pharmaceutics, 2024, 658: 124225.

[14]Zhou Z, Zhao Q, Huang Y, et al. Berberine ameliorates chronic intermittent hypoxia‐induced cardiac remodelling by preserving mitochondrial function, role of SIRT6 signalling[J]. Journal of Cellular and Molecular Medicine, 2024, 28(12): e18407.

[15]Pei C, Jia N, Wang Y, et al. Notoginsenoside R1 protects against hypobaric hypoxia-induced high-altitude pulmonary edema by inhibiting apoptosis via ERK1/2-P90rsk-BAD ignaling pathway[J]. European Journal of Pharmacology, 2023, 959: 176065.

[16]Gu N, Shen Y, He Y, et al. Loss of m6A demethylase ALKBH5 alleviates hypoxia-induced pulmonary arterial hypertension via inhibiting Cyp1a1 mRNA decay[J]. Journal of Molecular and Cellular Cardiology, 2024.

[17]Luan X, Zhu D, Hao Y, et al. Qibai Pingfei Capsule ameliorated inflammation in chronic obstructive pulmonary disease (COPD) via HIF-1 α/glycolysis pathway mediated of BMAL1[J]. International Immunopharmacology, 2025, 144: 113636.

[18]Jiang H, Lu C, Wu H, et al. Decreased cold‐inducible RNA‐binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure[J]. CNS Neuroscience & Therapeutics, 2024, 30(9): e70059.

[19]Wang X, Xie Y, Niu Y, et al. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1189348.

[20]Guo Y, Qin J, Sun R, et al. Molecular hydrogen promotes retinal vascular regeneration and attenuates neovascularization and neuroglial dysfunction in oxygen-induced retinopathy mice[J]. Biological Research, 2024, 57.

[21]Ma Q, Ma J, Cui J, et al. Oxygen enrichment protects against intestinal damage and gut microbiota disturbance in rats exposed to acute high-altitude hypoxia[J]. Frontiers in Microbiology, 2023, 14.

[22]Yang A, Guo L, Zhang Y, et al. MFN2-mediated mitochondrial fusion facilitates acute hypobaric hypoxia-induced cardiac dysfunction by increasing glucose catabolism and ROS production[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2023: 130413.

[23]Jinyu F, Huaicun L, Yanfei Z, et al. Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-altitude Hypoxia in the Rat Hippocampus[J]. 2024.

[24]Xu A, Huang F, Chen E, et al. Hyperbaric oxygen therapy attenuates heatstroke-induced hippocampal injury by inhibiting microglial pyroptosis[J]. International Journal of Hyperthermia, 2024, 41(1): 2382162.

[25]Zhang N, Wei F, Ning S, et al. PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats[J]. Journal of Cardiovascular Translational Research, 2024: 1-13.

[26]Zhang L, Liu X, Wei Q, et al. Arginine attenuates chronic mountain sickness in rats via microRNA-144-5p[J]. Mammalian Genome, 2023, 34(1): 76-89.

[27]Wei J, Hu M, Chen X, et al. Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway[J]. Current Medical Science, 2023: 1-9.

[28]Zhang L, Li J, Wan Q, et al. Intestinal stem cell-derived extracellular vesicles ameliorate necrotizing enterocolitis injury[J]. Molecular and Cellular Probes, 2025, 79: 101997.

[29]Liao Y, Ke B, Long X, et al. Abnormalities in the SIRT1-SIRT3 axis promote myocardial ischemia-reperfusion injury through ferroptosis caused by silencing the PINK1/Parkin signaling pathway[J]. BMC Cardiovascular Disorders, 2023, 23(1): 582.

[30]Wang M, Wen W, Chen Y, et al. TRPC5 channel participates in myocardial injury in chronic intermittent hypoxia[J]. Clinics, 2024, 79: 100368.

[31]Li J, Ye J. Chronic intermittent hypoxia induces cognitive impairment in Alzheimer’s disease mouse model via postsynaptic mechanisms[J]. Sleep and Breathing, 2024: 1-9.

[32]Nan L, Kaisi F, Mengzhen Z, et al. miR-375-3p targets YWHAB to attenuate intestine injury in neonatal necrotizing enterocolitis[J]. Pediatric Surgery International, 2024, 40(1): 63.

[33]Lu Y, Chang P, Ding W, et al. Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: Involvement of inhibition of the NF-κB signaling pathway in glial cells[J]. European Journal of Pharmacology, 2022, 929: 175137.

[34]Wei J Y, Hu M Y, Chen X Q, et al. Rosiglitazone attenuates hypoxia-induced renal cell apoptosis by inhibiting NF-κB signaling pathway in a PPARγ-dependent manner[J]. Renal Failure, 2022, 44(1): 2068-2077.

[35]Yilan Wang, Zherui Shen, Caixia Pei, Sijing Zhao, Nan Jia, Demei Huang,Xiaomin Wang, Yongcan Wu, Shihua Shi, Yacong He, Zhenxing Wang,Eleutheroside B ameliorated high altitude pulmonary edema by attenuating ferroptosis and necroptosis through Nrf2-antioxidant response signaling,[J]Biomedicine & Pharmacotherapy, Volume 156,2022,113982.

[36]Fang Zhao, Yan Meng, Yue Wang, Siqi Fan,Yu Liu,Xiangfeng Zhang, Chenyang Ran, Hongxin Wang and Meili Lu,Protective effect of Astragaloside IV on chronic intermittent hypoxia-induced vascular endothelial dysfunction through the calpain-1/SIRT1/AMPK signaling pathway.[J]Frontiers in Pharmacology,10.3389/fphar.2022.920977.

[37]Jing Zhang,Jian-Zhong Jiang,Jun Xu,Chen-Yu Xu,Shan Mao,Ying Shi , Wei Gu , Chun-Fang Zou , Yue-Ming Zhao , Liang Ye."Identification of Novel Biomarkers for Abdominal Aortic Aneurysm Promoted by Obstructive Sleep Apnea"[J]Annals of Vascular Surgery,Available online 2 February 2023.

[38]Zhang, C., Sun, Y., Guo, Y. et al."JMJD1C promotes smooth muscle cell proliferation by activating glycolysis in pulmonary arterial hypertension."[J].Cell Death Discov. 9, 98 (2023).

[39]Yanfei Zhang, Jinyu Fang, Yingyue Dong, Huiru Ding, Quancheng Cheng, Huaicun Liu, Guoheng Xu, Weiguang Zhang"High-Altitude Hypoxia Exposure Induces Iron Overload and Ferroptosis in Adipose Tissue."[J]. Antioxidants 2022,11, 2367.

[40]Wan-ping Yang, Mei-qi Li, Jie Ding, Jia-yan Li, Gang Wu, Bao Liu, Yu-qi Gao, Guo-hua Wang, Qian-qian Luo. "High-altitude hypoxia exposure inhibits erythrophagocytosis by inducing macrophage ferroptosis in the spleen."[J]. bioRxiv preprint, 2023.03.23.533972.

[41]Long Y, Chen H, Deng J, et al. Deficiency of endothelial FGFR1 alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice[J]. Frontiers in Pharmacology, 2022, 13: 1039103.

[42]Liu,J,Peng,S,Ye,L,Sun,Y,Zhao,Q,Wei,H, Luo, Q, He M,& Wang,G(2023)."Neuroinflammation aggravated by traumatic brain injury at high altitude is reversed by L-serine via NFAT1-mediated microglial polarization."[J].Frontiers in Cellular Neuroscience,17,1152392.doi:10.3389/fncel.2023.1152392.

[43]Ru Zhang,Ailin Yang,Lin Zhang,Linjie He,Xiaoming Gu,Caiyong Yu,Zhenxing Lu,Chuang Wang, Feng Zhou,Fei Li,Lele Ji,Jinliang Xing,Haitao Guo."MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism."[J].WILEY Online Library,2023-07-04 DOI: 10.1111/apha.14018.

[44]Wei J, Hu M, Chen X, et al. Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway[J]. Current Medical Science, 2023: 1-9.




参考:

高原疾病介绍

不同的海拔高度大气压和氧分压的变化对比



 *我公司可提供3Q验证,根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询。