联系我们
全身暴露染毒系统
产品描述
动物暴露染毒系统采用全身暴露的方式,将动物整体暴露在染毒实验物质的环境下。集成式染毒舱可放置两个大鼠笼,系统独立监测控制每个染毒舱内的环境。舱体为密闭式微负压设计,并具有废气处理装置,配有多种废气处理单元,可以有效防止气溶胶泄漏到实验室或环境中。
产品特点
· 舱体前后采用透明钢化玻璃,使用者可以从外面对动物进行观察,并且钢化玻璃耐腐蚀
· 具有全面的环境指标监测功能,可满足动物的居住和繁殖,并能对其进行长期暴露实验
· 控温范围:室温+5~50℃,温度分辨率:0.1℃
· 自动化染毒,设定参数后可无监守运行
· 系统集成化设计,可叠加放置
· 监控实验舱内的温度、湿度、氧气浓度、CO2浓度、舱内和室内染毒物质浓度,可以显示染毒物质浓度动态变化曲线
· 微电脑智能控温仪,具有设定、测定温度双数字显示和PID自整定功能,控温精确、可靠。
· 具有废气处理装置,保证实验环境安全
参考文献
[1]Fan Z,Zhou B,Liu Y,Sun W,Fang Y,Lu H,Chen D,Lu K,Wu X, Xiao T, Xie W, Bian Q."Optimization and Application of an Efficient and Stable Inhalation Exposure System for Rodents".[J].AAPS PharmSciTech.2022 Jan 6;23(1):50. doi:10.1208/s12249-021-02191-8.
[2]Jushan Zhang,Mo Xue,Rong Pan,Yujie Zhu,Zhongyang Zhang,Haoxiang Cheng,Johan L M Björkegren,Jia Chen,Zhiqiang Shi,Ke Hao"An e-cigarette aerosol generation, animal exposure and toxicants quantification system tocharacterize in vivo nicotine kinetics in arterial and venous blood"[J].bioRxiv preprint doi.
[3]Guolin Zhao,William Ho,Jinxian Chu, Xiaojian Xiong, Bin Hu,Kofi Oti Boakye-Yiadom,Xiaoyang Xu,Xue-Qing Zhang,Inhalable siRNA Nanoparticles for Enhanced Tumor-Targeting Treatment of KRAS-Mutant Non-Small-Cell Lung Cancer,[J]ACS Applied Materials&Interfaces,2023-06-24,DOI:10.1021/acsami.3c05007.
[4]Liu X, Zhao L, Wang R, et al. TRPM2 exacerbates airway inflammation by regulating oxidized-CaMKⅡ in allergic asthma[J]. Heliyon, 2024, 10(1): e23634.
[5]Tian X, Gao Y, Ma W, et al. Establishment of an Inhalation Administration Non-invasive Murine Model for Rapidly Testing Drug Activity against Mycobacterium tuberculosis[J]. bioRxiv, 2024: 2024.02. 27.582260.
[6]Liu L, Tang Z, Zeng Q, et al. Transcriptomic Insights into Different Stimulation Intensity of Electroacupuncture in Treating COPD in Rat Models[J]. Journal of Inflammation Research, 2024: 2873-2887.
[7]Dong Y, Dong Y, Zhu C, et al. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis[J]. Cell Communication and Signaling, 2024, 22(1): 364.
[8]Shen S, Huang Q, Liu L, et al. GATA2 downregulation contributes to pro-inflammatory phenotype and defective phagocytosis of pulmonary macrophages in chronic obstructive pulmonary disease[J]. Aging (Albany NY), 2024, 16(19): 12928.
[9]Zou X, Huang Q, Kang T, et al. An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages[J]. Biology Direct, 2025, 20(1): 4.
[10]Tian X, Gao Y, Li C, et al. A novel non-invasive murine model for rapidly testing drug activity via inhalation administration against Mycobacterium tuberculosis[J]. Frontiers in Pharmacology, 2025, 15: 1400436.
[11]Liu K, Liu R, Zhang C, et al. Suzi Daotan Decoction alleviates asthmatic airway remodeling through the AMPK/SIRT1/PGC-1α signaling pathway and PI3K/AKT signaling pathway[J]. Scientific Reports, 2025, 15(1): 6690.
[12]Huang Q, Kang T, Shen S, et al. Extracellular vesicular delivery of ceramides from pulmonary macrophages to endothelial cells facilitates chronic obstructive pulmonary disease[J]. Cell Communication and Signaling, 2025, 23(1): 124.
[13]Zeng H, Liu X, Liu P, et al. Exercise's protective role in chronic obstructive pulmonary disease via modulation of M1 macrophage phenotype through the miR-124-3p/ERN1 axis[J]. Science Progress, 2025, 108(3): 00368504251360892.