联系我们

注: * 为必填选项,请确保全部填完进行提交
首页 > 产品详情 > 呼吸研究 > 雾化、给药、染毒仪器

全身雾化给药系统

产品型号:

AER

详细介绍:

产品描述 AER动物雾化给药系统常用于动物模型建立及致敏性的研究。系统可将液体的药物雾化分散为可吸入的气溶胶,动物暴露于预定时间、一定浓度某种气体的实验舱体中,... 查看详情 >
留言购买

产品描述 

AER动物雾化给药系统常用于动物模型建立及致敏性的研究。系统可将液体的药物雾化分散为可吸入的气溶胶,动物暴露于预定时间、一定浓度某种气体的实验舱体中,完成致敏和激发过程,实现动物模型的建立;也可作为全身暴露系统,用于动物的全身暴露吸入式染毒实验。

药物雾化中采用微孔筛高频震荡技术,代替了传统的超声雾化及气流喷射雾化方式,雾化头中心分布有上千个精密微孔。雾化时,微孔筛通过高频振荡把液体药物以气溶胶的形式喷射出去。气溶胶的粒径为1-5微米,可有效进入肺泡,是利于深度肺部沉积的液滴。

系统主要由控制器、雾化舱和废气过滤器组成。雾化控制器采用液晶触摸屏,人性化界面,操作方便;具有雾化速率控制功能;可设置换气速率,为实验舱提供新鲜的空气。

具有单通道和双通道配置供选择。

动物雾化给药系统可提供不同尺寸规格的给药舱,详情请来电咨询。

 

适用领域

呼吸类疾病的造模及雾化给药,如支气管哮喘、肺纤维化、慢性支气管炎、肺损伤等。

 

型号说明


产品名称

型号

说明

 动物雾化给药系统

 AER-S-AS

控制器+小号标准舱体

 动物雾化给药系统

 AER-S-AM

控制器+中号标准舱体

 动物雾化给药系统

 AER-S-AL

控制器+大号标准舱体

 动物雾化给药系统

 AER-AS

双通道控制器+小号标准舱体×2

 动物雾化给药系统

 AER-AM

双通道控制器+中号标准舱体×2

    动物雾化给药系统

  AER-AL

双通道控制器+大号标准舱体×2



参考文献

[1]Fan Z,Zhou B,Liu Y,Sun W,Fang Y,Lu H,Chen D,Lu K,Wu X, Xiao T, Xie W, Bian Q."Optimization and Application of an Efficient and Stable Inhalation Exposure System for Rodents".[J].AAPS PharmSciTech.2022 Jan 6;23(1):50. doi:10.1208/s12249-021-02191-8.

[2]Jushan Zhang,Mo Xue,Rong Pan,Yujie Zhu,Zhongyang Zhang,Haoxiang Cheng,Johan L M Björkegren,Jia Chen,Zhiqiang Shi,Ke Hao"An e-cigarette aerosol generation, animal exposure and toxicants quantification system tocharacterize in vivo nicotine kinetics in arterial and venous blood"[J].bioRxiv preprint doi.

[3]Guolin Zhao,William Ho,Jinxian Chu, Xiaojian Xiong, Bin Hu,Kofi Oti Boakye-Yiadom,Xiaoyang Xu,Xue-Qing Zhang,Inhalable siRNA Nanoparticles for Enhanced Tumor-Targeting Treatment of KRAS-Mutant Non-Small-Cell Lung Cancer,[J]ACS Applied Materials&Interfaces,2023-06-24,DOI:10.1021/acsami.3c05007.

[4]Liu X, Zhao L, Wang R, et al. TRPM2 exacerbates airway inflammation by regulating oxidized-CaMKⅡ in allergic asthma[J]. Heliyon, 2024, 10(1): e23634.

[5]Tian X, Gao Y, Ma W, et al. Establishment of an Inhalation Administration Non-invasive Murine Model for Rapidly Testing Drug Activity against Mycobacterium tuberculosis[J]. bioRxiv, 2024: 2024.02. 27.582260.

[6]Liu L, Tang Z, Zeng Q, et al. Transcriptomic Insights into Different Stimulation Intensity of Electroacupuncture in Treating COPD in Rat Models[J]. Journal of Inflammation Research, 2024: 2873-2887.

[7]Dong Y, Dong Y, Zhu C, et al. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis[J]. Cell Communication and Signaling, 2024, 22(1): 364.

[8]Shen S, Huang Q, Liu L, et al. GATA2 downregulation contributes to pro-inflammatory phenotype and defective phagocytosis of pulmonary macrophages in chronic obstructive pulmonary disease[J]. Aging (Albany NY), 2024, 16(19): 12928.

[9]Zou X, Huang Q, Kang T, et al. An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages[J]. Biology Direct, 2025, 20(1): 4.

[10]Tian X, Gao Y, Li C, et al. A novel non-invasive murine model for rapidly testing drug activity via inhalation administration against Mycobacterium tuberculosis[J]. Frontiers in Pharmacology, 2025, 15: 1400436.

[11]Liu K, Liu R, Zhang C, et al. Suzi Daotan Decoction alleviates asthmatic airway remodeling through the AMPK/SIRT1/PGC-1α signaling pathway and PI3K/AKT signaling pathway[J]. Scientific Reports, 2025, 15(1): 6690.

[12]Huang Q, Kang T, Shen S, et al. Extracellular vesicular delivery of ceramides from pulmonary macrophages to endothelial cells facilitates chronic obstructive pulmonary disease[J]. Cell Communication and Signaling, 2025, 23(1): 124.

[13]Zeng H, Liu X, Liu P, et al. Exercise's protective role in chronic obstructive pulmonary disease via modulation of M1 macrophage phenotype through the miR-124-3p/ERN1 axis[J]. Science Progress, 2025, 108(3): 00368504251360892.





*我公司可提供3Q验证,根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询。